H₂C=N-CH(R)-COOH is also accepted, if water is shown as one of the products.

- 2. $HOCH_2-NH-CHR-COOH + OH^- \rightarrow HOCH_2-NH-CHR-COO^- + H_2O$
- 3. $c_{\text{amino acid}} = (c_{\text{NaOH}}(V_{\text{NaOH}} V_{\text{cor}})) / V_{\text{amino acid}}$
- 4. $M = m_{\text{arnino acid}} / c_{\text{amino acid}} \cdot V_{\text{flask}}$
- 5. $c_{\text{amino acid}} = (c_{\text{NaOH}}(V_{\text{NaOH}} + 2.0 V_{\text{cor}})) c_{\text{HCl}}V_{\text{HCl}}) / V_{\text{amino acid}}$
- 7. The relationship between the amino acids and spectra is found based on the number of peaks in the ¹³C spectra as well as integral intensity and multiplicity of the signals in ¹H spectra: 1 isoleucine, 2 methionine, 3 norvaline, 4 valine.
- 8. The prevailing forms are: C in acidic, B in neutral, and D in alkaline media.
- 9. Amino acid residues can be found in all the given classes of biomolecules except nucleic acids and oligosaccharides.
- 10. C, H, N, O, S, Se.
- 11. 4 dipeptides can be formed (Asn-Asn, Asp-Asp, Asn-Asp, Asp-Asn). The acidic hydrolysis will give the initial amino acids Asn and Asp. Only aspartic acid will be found in the case of complete hydrolysis.
- **12.** L-cysteine having S-configuration is the natural isomer. Both isomers are given hereunder:

$$\begin{array}{cccc} \mathsf{COOH} & \mathsf{COOH} \\ \mathsf{H} & \mathsf{HSH}_2\mathsf{C} & \mathsf{H} \\ \mathsf{NH}_2 & \mathsf{NH}_2 \\ \mathsf{S} & \mathsf{R} \end{array}$$

13. Hydantoin hydrolysis affords the amino acid:

2013

1. $5Fe^{2+} + MnO_4^- + 8H^+ = 5Fe^{3+} + Mn^{2+} + 4H_2O$.

2. Equations of the reactions proceeding when KMnO₄ is added to the aliquot:

$$5H_2O_2 + 2MnO_4^- + 6H^+ = 2Mn^{2+} + 5O_2 + 8H_2O$$

 $10I^- + 2MnO_4^- + 16H^+ = 2Mn^{2+} + 5I_2 + 8H_2O$

Calculation of the $KMnO_4$ amount needed for complete H_2O_2 oxidation (for the initial H_2O_2 concentration of 0.176 M):

$$V_{\text{max}} = \frac{c(KI) \cdot 0.005/5 + c(H_2O_2) \cdot 0.005 \cdot 2/5}{c(KMnO_4)} = \frac{0.007 \cdot 0.005/5 + 0.176 \cdot 0.005 \cdot 2/5}{5.00 \cdot 10^{-2}} = 7.2 \text{ (mL)}.$$

Sample titration results:

Sample titration results:					
Absolute time, h.min.s.	Relative time (time of the experiment minus the initial time), s	V (KMnO ₄) total, mL	V (FeSO ₄), mL	c (H ₂ O ₂), mol/L	Note showing outlier results
10.00.10	370	8.0	3.8	0.159	
10.04.50	650	6.1	0.5	0.144	
10.08.20	860	7.0	2.3	0.149	-
10.13.20	1160	6.1	2.5	0.124	
10.15.40	1300	6.1	3.0	0.119	
10.22.00	1680	5.6	3.0	0.107	ļ
10.28.00	2040	5.1	3.0	0.094	·
10.33.15	2355	4.6	2.6	0.086	
10.37.00	2580	3.6	1.5	0.072	_
10.45.00	3060	3.6	1.8	0.069	<u> </u>

3. Peroxide concentration:

$$c(H_2O_2) = \frac{c(KMnO_4) \cdot V(KMnO_4) \cdot c(KI) \cdot 0.005/5 \cdot c(FeSO_4) \cdot V(FeSO_4)/5}{0.005} \frac{5}{2}$$

4. Calculation of the reaction order: linear dependence is found in coordinates $\ln c(H_2O_2)$ – time. The slope of the line ($\ln c = \ln c_0 - kt$) equals -k. The reaction order on H_2O_2 equals unity.

Sample Plot #1:

The slope of the above plot equals $3.1\cdot10^{-4}$. The reaction rate of H_2O_2 decomposition found from the graph: $k' = 3.1\cdot10^{-4} \, \mathrm{c}^{-1}$. When marking, the Jury calculates the k value and corresponding error using the least square procedure (the outliers are not counted). $k = \frac{\langle x \rangle \langle y \rangle - \langle x \rangle}{\langle x \rangle^2 - \langle x^2 \rangle}$, where x = t, time in seconds (from the Table), $y = \ln c$. The error: $\Delta k = 2\sqrt{\frac{1}{n-2}\left(\frac{\langle y^2 \rangle - \langle y \rangle^2}{\langle x^2 \rangle - \langle x \rangle^2} - k^2\right)}$, where n is the number of measurements; $\varepsilon_1 = \frac{\Delta k}{k}\cdot 100\%$, ε_1 accounts the experiment quality. Besides, $\varepsilon_2 = \frac{|k_{cak}(part) - k_{cak}(jury)|}{|k_{cak}(jury)|}\cdot 100\%$ is calculated. This value indicates whether k was calculated from the experimental data adequately. The $c(H_2O_2)$ values reported by the participants are not recalculated. Besides, $\varepsilon_3 = \frac{|k_{cak}(jury) - k_{vac}|}{|k_{vac}|}\cdot 100\%$ value is also calculated. The latter characterizes the quality of the aliquot removal and the solution preparation.

- $\epsilon_1 \le 5\%$: 12 points (maximum); $\epsilon_1 > 15\%$: 0 points; $5\% < \epsilon_1 \le 15\%$: linear dependence of the number of points on $(1-\epsilon_1)$.
- $\varepsilon_2 \le 3\%$: 7 points (maximum); $\varepsilon_1 > 10\%$: 0 points; 2.5% $< \varepsilon_2 \le 10\%$: linear dependence of the number of points on $(1-\varepsilon_1)$.
- $\varepsilon_3 \le 5\%$: 6 points (maximum); $\varepsilon_1 > 10\%$: 0 points; $5\% < \varepsilon_3 \le 15\%$: linear dependence of the number of points on $(1-\varepsilon_1)$.
- 5.1. $H_2O_2 = H_2O + \frac{1}{2}O_2$ (catalysis by manganese dioxide)
- 5.2. $2MnO_4^- + 3H_2O_2 = 2OH^- + 2MnO_2 + 2H_2O + 3O_2$
- 5.3. $H_2O_2 + 2I^- + 2H^+ = 2H_2O + I_2$

The criteria for giving points:

6. The reaction order corresponding to the plots:

7. The inclined line refers to $E(MnO_4/Mn^{2+})$, the lower horizontal one to $E(I_2/\Gamma)$, and the upper horizontal line to $E(CI_2/\Gamma)$. Iodide oxidation by $KMnO_4$ in the presence of chloride is possible in the pH range between the intercepts of the lines.